REACTION OF HALOANTHRAQUINONES WITH TRI-n-BUTYLPHOSPHINE

Sadao ARAI , Takamichi YAMAGISHI , and Mitsuhiko HIDA

Department of Industrial Chemistry , Faculty of Technology ,

Tokyo Metropolitan University

Fukazawa , Setagaya-ku , Tokyo 158

New phosphonium salts were obtained by the reaction of 1-amino-2,4-dibromoanthraquinone or sodium 1-amino-4-bromoanthraquinone-2-sulfonate with tri-n-butylphosphine in the presence of cuprous chloride. In these reactions, the bromine atom of anthraquinone derivatives was substituted by the phosphine to give phosphonium salts containing carbon-phosphorus bond.

In the course of the investigation of the Ullmann condensation reaction of halo-anthraquinones, the authors observed that phosphines reacted with haloanthraquinones in the presence of cuprous chloride catalyst. Ramirez found that triphenylphosphine reacted with p-benzoquinone at a carbon atom and with chloranil at an oxygen atom. Both carbon and oxygen attacks were observed in the reaction of triphenylphosphine with 2,5-dichloro-p-benzoquinone. 1) The reactions of haloanthraquinones with phosphines, however, have not been reported.

The present study was attempted to clarify the reaction products of haloanthraquinones with tri-n-butylphosphine.

1-Amino-2,4-dibromoanthraquinone(1) and sodium 1-amino-4-bromoanthraquinone-2-sulfonate(2) were used as haloanthraquinones.

A homogeneous mixture of equimolar amounts of cuprous chloride(CuCl) and tri-n-butylphosphine in benzene was added to an ethanol-benzene solution containing equimolar amount of haloanthraquinone, and heated at the boiling point for 10 hr under nitrogen atmosphere. Reaction products ($\underline{3}$ from $\underline{1}$ and $\underline{4}$ from $\underline{2}$) were isolated by column chromatography on silica gel and recrystallized ($\underline{3}$ from benzene-ethanol and $\underline{4}$ from methanol-water).

The ir absorption bands of carbonyl groups were remained almost unchanged. Therefore, it was considered that phosphine bonded with carbon of the anthraquinone ring. In nmr spectra of $\underline{3}$ and $\underline{4}$, the ratio of ring protons to alkyl protons was 5:27 and the signal of alkyl protons was split into three peaks, which have signal-strength ratio of 6:12:9. Those three peaks of alkyl protons are assigned to the α -protons, the β - and γ -protons and the δ -protons of n-butyl groups attached to phosphorus atom, respectively. The results of elementary analyses supported that the reaction products ($\underline{3}$ and $\underline{4}$) were phosphonium salts.

In conclusion, the obtained results indicated that the products were the phosphonium salts containing carbon-phosphorus bond formed by the substitution of the bromine atom with tri-n-butylphosphine. The product $\underline{4}$ is considered to be an inner salt, since it showed negative Beilstein test.

In the absence of cuprous chloride, the yields of phosphonium salt were very low ($\underline{3} - 19\% : \underline{4} - 3\%$). The reaction of $\underline{1}$ proceeded almost selectively, but in the reaction of $\underline{2}$, some other products were formed.

Reference

1) F. Ramirez and S. Dershowitz, J. Amer. Chem. Soc., <u>78</u>, 5614 (1956).

(Received April 23, 1974)